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Abstract. Saliency-based analysis can be applied to time-varying 3D datasets
for the purpose of summarization, abstraction, and motion analysis. As the sizes
of time-varying datasets continue to grow, it becomes more and more difficult to
comprehend vast amounts of data and information in a short period of time. Au-
tomatically generated thumbnail images and previewing of time-varying datasets
can help viewers explore and understand the datasets significantly faster as well
as provide new insights. In this paper, we introduce a novel method for detect-
ing salient frames for molecular dynamics simulations. Our method effectively
detects crucial transitions in simulated mechanosensitive ion channel (MscS), in
agreement with experimental data.

1 Introduction

Recent advances in acquisition and simulation techniques have generated a huge amount
of time-varying datasets. Time-varying data can be acquired from scientific simulation,
videos, and animation libraries. Features in the time-varying datasets are commonly de-
fined as the regions of interest that a human observer is likely to look for. As the number
and complexity of these datasets increase exponentially [1], it is becoming impractical
to expect a human observer or a domain expert to discover all the features manually.
Automatic or semi-automatic tools to help humans discover scientifically interesting
features are especially important for this reason.

Many illustration-based techniques have been proposed by several researchers [2–4]
to summarize time-varying datasets such as ocean flow, volume, and human skeletons.
The basic step for these illustration techniques is automatic detection of salient frames
which have interesting features. In the method of image saliency by Itti et al. [5] or
mesh saliency by Lee et al. [6], they use a center-surround operator to identify the
uniqueness of a pixel or a vertex with respect to its neighborhood. In this paper, we
have decided to use a similar approach and define saliency as the uniqueness of a single
frame with respect to its neighboring frames both forwards and backwards in time. Our
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collaborator, Dr. Sergei Sukharev’s group at Biology Department at the University of
Maryland, was interested in identifying the frames in molecular dynamics simulations,
where the anomalies (kinks) in the secondary structures happen in the opening and
closing simulations of the E. coli channel [7]. We validate the effectiveness of our salient
frame detection algorithm in this molecular dynamics simulation.

The rest of this paper is organized as follows. A review of related work is provided
in Section 2. In Section 3, we formulate the relationship between one residue and the
neighboring residues in space, and present an algorithm to detect saliency in time. Re-
sults are presented in Section 4. Section 5 concludes this paper and discusses future
work.

2 Background and Related Work

The goal of this paper is to detect salient frames in molecular dynamics simulations.
This section briefly reviews some background in protein and ion channel structure and
the related research in the area of motion analysis and visualization for time-varying
3D datasets.
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Fig. 1: Image (a) shows the structure of an amino acid. Image (b) shows a peptide bond
formed by the reaction between a carboxyl group of one amino acid and an amino group
of the other amino acid. Images are adapted from [8].



2.1 Protein Structures

A protein structure is formed by a unique three-dimensional assembly of a specific
polypeptide chain. Each polypeptide chain contains a particular sequence of serially
linked amino acids. Figure 1(a) shows an amino acid which is composed of an amino
group, a carboxyl group, and a side-chain, which are connected at the central Cα atom.
When the carboxyl group of one amino acid reacts with the amino group of another
amino acid, a peptide (i.e., amide) bond (Figure 1(b)) is formed by releasing a molecule
of water (H2O). This peptide bond is typically composed of four atoms (C, O, N, and
H) which lie on a common plane due to the partial double bond characteristic at the
CO-NH connection. Here, the recurring atomic array of N-Cα -C(=O) from each amino
acid of a polypeptide chain constitutes the protein backbone. By definition, the specific
amino acid sequence for each polypeptide chain is the primary structure of the protein.
Segments of polypeptides often fold locally into stable structures such as α-helices or
β -strands, each of which is called a secondary structure. An α-helix is a right-handed
coiled conformation, resembling a spring. β -strands connected laterally by three or
more hydrogen bonds, form a generally twisted, pleated sheet.
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Fig. 2: Images (a) and (b) show the computation of a dihedral angle between 4 atoms
(A, B, C, and D). When we align the atom B and the atom C as shown in Image (b),
the dihedral angle θ is defined as the angle between the atom A and the atom D in
clockwise direction. Image (c) shows the dihedral angles (φ between C-N-Cα -C, ψ

between N-Cα -C-N, and ω between Cα -C-N-Cα ) and the normal vectors (n1 and n2 on
the planes defined using N-Cα -C in residue 1 and residue 2, respectively. Images are
adapted from [8].



The angle between two planes is referred as their dihedral angle. Figure 2(a) and (b)
shows how we can compute the dihedral angle when there are four atoms which are not
co-linear in 3D space. We first align the atoms B and C as shown in Figure 2(b). Then
the dihedral angle corresponds to the angle measured in clockwise direction between
the atom A and the atom D. Similarly, for a sequence on a protein’s polypeptide chain,
backbone atoms (C, N, and Cα ) allow for three different dihedral angles of proteins as
depicted in Figure 2(c): φ involving the backbone atoms C-N-Cα -C, ψ involving the
backbone atoms N-Cα -C-N, and ω involving the backbone atoms Cα -C-N-Cα . The pla-
narity of the peptide bond usually restricts ω to be 180◦ or 0◦. Thus the Ramachandran
plot [9] considers two variable dihedral (torsion) angles (φ and ψ) and shows possible
combinations of these conformational angles of representative secondary structures in
a polypeptide such as α-helices or β -sheets.

2.2 Ion Channels

Ion channels are proteins that regulate the flow of ions into and out of the cells. Ion
channels enable a very rapid flow of ions. In physiological conditions, MscS can provide
for the flow of about a billion ions per second. Ion channel transitions are very fast
– some opening for less than a millisecond before they close. This rapid and highly
specific gating of ion channels is necessary for survival of cells. The ion channel kinetics
impacts the speed at which ions flow across the cell membrane and the reaction time
of a nerve or a muscle cell, and thus dictates the response time of the animal to the
possible environmental dangers. An accurate understanding of the structural changes
and functioning of ion channels is vital for therapeutic drug design. Nearly a third of
the top 100 pharmaceutical drugs target ion-channels.

The bacterial mechanosensitive channel MscS and its eukaryotic homologs are prin-
cipal turgor regulators in many walled cells. In bacteria, both free-living and pathogenic,
these channels play critical roles of tension-driven osmolyte release valves thus allow-
ing the organisms to avoid osmotic rupture in the event of abrupt medium dilution. MscS
opening is driven directly by tension in the surrounding lipid bilayer and is accompa-
nied by tilting of the pore-lining helices (TM3) which assume a kink-free conforma-
tion [10]. When tension is released, the TM3 helices may buckle at two different hinge
points, which defines the progression toward the closed state, which is shown in fig-
ure 3(a). Thus, helical flexibility appears to define the functional cycle of E. coli MscS.
The major dataset analyzed consisted of two trajectories of atomic coordinates obtained
from 4 ns steered simulations representing opening of wild-type and F68S mutant of E.
coli MscS. The major goal was identification of frames in which conformations of he-
lices deviated from the typical alpha-helical conformations.

2.3 Saliency-based Motion Analysis

Designers and artists have long used a single static image or a few images to illus-
trate dynamics of scenes for motion. They have depicted dynamics to facilitate visual
communication in comic books and storyboards [11]. Recently, several graphics re-
searchers [3, 12, 13] have proposed illustration-based techniques to depict the dynam-
ics of time-varying data in a compact way. They use principles of visual art such as



glyphs, and generate an image (or a few images) to summarize the time-varying data
to facilitate visual communication. For instance, Joshi and Rheingans [3] have used
illustration-based techniques such as speedlines, flow ribbons, and strobe silhouettes to
convey change over time for a time-varying dataset. Nienhaus and Dollner [12] have
used dynamic glyphs such as directed acyclic graphs and behavior graphs to provide
further information about dynamics in the 3D scene.

A very interesting beginning in detecting salient frames for human skeleton datasets
has been made by Assa et al. [2]. They generate an action synopsis for presenting the
motion of a single skeleton-based character. They represent motion in affinity matrices,
constructed from various aspects of a pose such as joint positions, joint velocities, joint
angles, and joint angular velocities. They first define a vector xk

a which represents an
aspect a of the pose at frame k. Then, they compute the dissimilarity of the aspect a
between two given frames i and j by a simple distance measure to identify key poses.
Finally, they compose these key poses into a single image by including the most signif-
icant poses.

There has been a significant increase in research activities related to the visualiza-
tion of molecular dynamics simulations. Lampe et al. explore the use of a two-level
hierarchical technique for the visualization of protein dynamics [14]. Recently, Krone
et al. presented a method capable of visualizing molecular surface dynamics at interac-
tive rates [15]. Bidmon et al. present an informative and intuitive method for visualizing
the motion of molecules around existing proteins using pathlines [16]. All of these pa-
pers [14–16] discuss methods for efficiently visualizing molecular dynamics, but do not
detect key or salient frames int he simulation. Mehta et al. have explored approaches
to the detection, classification and visualization of anomalous structures, such as de-
fects in crystalline lattice structures [17, 18]. We are not aware of any research into the
detection of salient frames for protein dynamics simulations.

3 Salient Frame Detection

In this paper, we define saliency as the uniqueness of a single frame with respect to
its surrounding frames in time, and detect the salient frames for molecular dynamics
simulations. Mechanosensitive ion channels play a critical role in transducing physical
stresses at the cell membrane into an electrochemical response. The crystal structure
of E. coli MscS has provided a starting point for detailed descriptions of its mecha-
nism. Figure 3 shows the opening of the E. coli mechanosensitive ion channel that we
will consider throughout this paper. There are 7 subunits in this ion channel, and all
7 subunits are topologically identical, but act relatively independently in the simula-
tion. Each subunit has residues 1 to 175 (with few gaps cut out). To understand this
mechanism, identifying the presence of kinks in α-helices is critical because they have
functional importance. Kink detection, however, is a tricky question because there are
many factors involved. These include the state (ruptured or not) of the H bonds, local
geometric information such as Ramachandran angles (torsion angles), and more global
information such as the angles among multiple atoms.

In this section, we formulate the relationship between one residue and the neighbor-
ing residues spatially, and present an algorithm to detect saliency in time. Our frame-
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Fig. 3: The images above show the closed (left) and open (right) conformations of the
heptameric E. coli mechanosensitive channel MscS.

work encompasses the global and local geometric properties of backbone residues in a
molecular dynamics simulation.

3.1 Construction of Affinity Matrices in Space

We explore the relationship between one residue and the neighboring residues to detect
the changes in α-helices. The straightening and buckling of α-helices are interesting
because they appear in many of simulations of ion channels and are believed to be cor-
related with conformational states of the whole channel. There are many ways to define
the relationship among residues, but we believe the angles in backbone atoms would
be one of the best ways since backbone atoms are much more stable in their positions
than side-chains. As a Ramachandran plot suggests, we could have measured torsion
(dihedral) angles and conjectured the changes of secondary structures for each residue.
However, analysis of Ramachandran angles only considers very local properties inside
a residue, and does not encompass the global geometric property among a sequence
of residues. Instead, we use the relative angles between one Cα (α-carbon) and other
α-carbons within a cut-off distance rs.

Molecular dynamics simulation gives us a trajectory file which holds all the atom
positions in 3D space for every frame k. Since three non-co-linear points in 3D space
can define a plane, the positions of N-Cα -C atoms in each residue can define a plane
and its normal vector n as shown in Figure 2(c). We first compute normal vectors (ni)
to the planes formed by these N-Cα -C atoms in residues (Ri) for every frame k. Then,



we construct an affinity matrix Ak for the k-th frame as:

Ak =


n1 ·n1 n1 ·n2 n1 ·n3 . . . n1 ·nm
n2 ·n1 n2 ·n2 n2 ·n3 . . . n2 ·nm
n3 ·n1 n3 ·n2 n3 ·n3 . . . n3 ·nm

...
...

...
. . .

...
nm ·n1 nm ·n2 nm ·n3 . . . nm ·nm

 (1)

where m is the number of residues that we consider. Here each element ak(i, j) is simply
a dot product between the normals ni and n j. If two residues have indices i and j that
differ by more than a cut-off value rs, we set ak(i, j) to be zero. Throughout this paper,
we use rs = 5. Because on average, α-helices turn once every 3.6 amino acids, consid-
ering ±5 amino acids forwards and backwards should cover, in total, about 3 turns in
α-helices, which is a sufficient scale for kink detection.

Figure 4 visualizes the affinity matrices from the first and the second frames for 33
residues (from residue 94 to residue 126) of the subunit 1 for the molecule shown in
Figure 3.

3.2 Saliency Detection among Neighboring Affinity Matrices

Our affinity matrix in equation 1 represents the geometric relationship among neigh-
boring residues. This angular relationship cannot be represented by a single vector x as
in [2]. Therefore, the dissimilarity between two given frames i and j should be com-
puted by the difference between two affinity matrices Ai and A j. There are several ways

Fig. 4: Visualization of affinity matrices computed from the first and the second frames
for 33 residues of the subunit 1 for E. coli MscS (shown in Figure 3) when the cut-off
distance, rs = 5 is used.



to compute the difference between two matrices. However, we have decided to use the
singular value decomposition (SVD) in computing the difference between two matrices.
The SVD [19] factorizes a given m×n matrix A into three matrices: A =U ×Σ ×V T ,
where U is an m×m orthogonal matrix (U×UT = I and UT ×U = I), Σ is m×n diag-
onal matrix with non-negative numbers, and V T is the transpose of an n×n orthogonal
matrix V. There are two nice properties in the SVD decomposition: (1) The columns of
U and V are a set of orthonormal basis vectors (singular vectors), and (2) the diagonal
entries in Σ are called singular values, which are sorted in non-increasing order and in-
dicate the importance of the corresponding basis vectors. If there is noise in the original
matrix A, the least important basis vectors and singular values are dominated by noise
and can be neglected.

In α-helices, backbone atoms (C, O, N, and H) are much more stable than side-
chains because of the H bonds. However, there could be still a lot of vibrations in the
positions of backbone atoms over time. By using SVD analysis, we can reduce the
effects of vibrations by ignoring the smallest singular values. This is why we use SVD
over other methods for computing the uniqueness of the affinity matrix Ai relative to
the affinity matrix A j.

Uniqueness of the affinity matrix Ai relative to the affinity matrix A j: We perform
a singular value decomposition on Ai: Ai =Ui×Σi×V T

i . This returns the best basis vec-
tors as the column vectors in Ui. Since the basis vectors are sorted by their importance
in SVD decomposition, we can obtain a reduced matrix Ûi by taking the first ri basis
vectors in Ui. For the j-th frame A j, we use these ri basis vectors to best approximate it.
For this, we project A j to the low-dimensional subspace spanned by the ri basis vectors
as: Wi, j = ÛT

i ×A j. This gives us the weight matrix Wi, j for the ri basis vectors. We use
this weight matrix to approximate A j by: Â j = Ûi×Wi, j. Finally we compute the root
mean square error (εi j) between Â j and A j: ‖ Â j−A j ‖F , where the Frobenius norm of

a matrix M is defined as ‖M ‖F=

√
m

∑
i=1

n

∑
j=1
|li j|2.

Saliency Value si for the frame i: To compute the uniqueness of a frame i relative
to other frames j, we avoid considering all possible pairs (i, j). Instead, we consider
neighboring frames j where |i− j| ≤ rt . Throughout this paper, we use rt = F/10,
where F is the total number of frames. The final saliency value si is the average of the
errors εi j in neighboring frames of i:

si =

∑
| j−i|≤rt

εi j

Fi

where Fi is the number of frames whose distance from the frame i is less than or equal
to rt . Figure 5 shows the graph for these saliency values in blue.

4 Results

We have compared our detected salient frames with the ones identified independently
by our collaborators (biology scientists) for molecular dynamics simulations. Figure 5



shows the five most salient frames detected by our method for the subunit 4 in the E.
coli mechanosensitive ion channel in Figure 3. The frames 5, 26, 30, and 34 which have
been detected by our method are the same or very close to the frames 3, 24, 26, 30,
and 35 with changes in the kinks, which were detected manually by our collaborators.
The frame 39 detected by our algorithm is not close to any frame detected manually
by our collaborators, but it had the lowest saliency value among the five most salient
frames. Generally, kinks change towards the end of this simulation, and our method
successfully detects these important frames.

Figure 6 shows the five most salient frames detected by our method for the subunit
1 in the ion channel shown in Figure 3. This subunit is topologically identical to the
subunit 4, but acts differently in the simulation. Therefore, it results in different salient
frames (frames 11, 19, 21, 35, and 39) as shown in Figure 6. Our collaborators identi-
fied frames 2, 18, 20, 23, 35, 36, and 39 as being salient. Figure 7 shows the six most
salient frames detected by our method for the subunit 4 in the symmetry annealing of
MscS F68S mutant. In this molecular dynamics simulation, residue 68 was mutated to
another, serine, which has very specific consequences for channel inactivation in real
experiments. As changes in the kinks occur more frequently than the previous simu-
lations, we observe a larger number of salient frames than in the previous cases. Our
collaborators have manually identified frames 2, 4, 18, 34, and 38 as being salient.
Among these, frames 2, 4, 18, and 38 are the same or close to the frames 1, 5, 18, and
39 detected by our algorithm, and the remaining frame 34 also exhibits a relatively high
saliency value as shown in Figure 7.

5 Conclusions and Future Work

In this paper, we have detected salient frames for molecular dynamics simulations. We
have introduced the notion of saliency in time, and successfully identified most of the
key frames which have changes in the kinks (i.e. appearance or disappearance of a kink)
for E. coli channel. We believe that our method can enable researchers to focus on the
important frames for further analysis of the dataset.

We currently consider the angles among residues in α-helices, and identify the
anomalies (kinks) in the secondary structures for an E. coli channel. We believe, how-
ever, this framework can be easily extended to encompass salient features in other time-
varying simulations by changing the way we construct affinity matrices to address other
needs by scientists or domain experts. In this context, it will be interesting to compare
and contrast the results of salient frames detected by a new method with what scientists
think salient in their domains.
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(a) Frames 0 to 19

(b) Frames 20 to 39

Fig. 5: Five most salient frames detected by our method for the subunit 4 in the E.
coli ion channel (MscS) in Figure 3. The changes in the kinks are detected towards the
end of this simulation, and our method successfully detects some of the most important
frames.



(a) Frames 0 to 19

(b) Frames 20 to 39

Fig. 6: Five most salient frames detected by our method for the subunit 1 in the E.
coli ion channel (MscS) in Figure 3. This subunit is topologically identical to the subunit
1, but acts differently in the simulation.



(a) Frames 0 to 19

(b) Frames 20 to 39

Fig. 7: Six most salient frames detected by our method for the subunit 4 in the other
molecular dynamics simulation, showing the symmetry annealing of MscS F68S mutant
– the residue 68 was mutated to another, serine, which has very specific consequences
for channel inactivation in real experiments.


